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The accommodation coefficients, which characterize energy and
momentum transfer in the problem of the interaction of a rarefied gas
with a surface, can be calculated by analytical or numerical methods
in which the initial disturbances of the crystal lattice are taken into
account or ignored. This necessitates replacement of the infinite three-
dimensional crystal of the solid, depending on the approximate for-
mulation of the problem, by afiniteone-, two-, or three-dimensional
assembly of atoms connected by particular bonds or without such bonds.
The accuracy of the result when this replacement is made has to be
assessed.

In [1] the zones of free movement and strong interaction in a two=
dimensional model were determined, and in [2] estimates were made
of the length of the chain of atoms involved in the collision act in the
one-dimensional case. In this paper we investigate the effect on the
accommodation coefficients of the size of the block of solid atoms
which are implicated in the collision and are taken into consideration
in the case of interaction of a gas atomn with a surface.

In the one-dimensional problem all the atoms of the chain at the
initial instant have random (in direction and magnitude) displacements
from the equilibrium position and vibration velocities.

The dependence of the energy and momentum accommodation
coefficients on the initial conditions and gas parameters is determined,
and the number of atoms in the chain which affect the accuracy of
calculation of the accommodation coefficients for a prescribed inter-
action energy is estimated.

In the two~ and three-dimensional cases the forces of interaction
of the surface atoms with the incident gas atom are estimated. With
increasing distance from the target atom the forces diminish, and,
hence, it makes sense to obtain information about the number of
surface atoms which are directly implicated in the collision act, in
addition to the target atom, and affect the value of the accommoda=-
tion coefficients.

After the appropriate evaluations the solid can be regarded as a
finite three=dimensional crystal. We describe the method and the
scheme of calculation of the energy and momentum transfer between
the rarefied gas and the solid surface.

The atoms in the lattice are connected with one another by elas~
tic forces proportional to the displacements from the equilibrium posi~

tions. The displacements and velocities of the atoms in the c}ystal at
the initial instant, defined as the start of interaction with the gas

atom, have random magnitude and direction. The gas atoms have a
macrovelocity which corresponds to an interaction energy of ~5~
=10 eV, and have a Maxwellian thermal-velocity distribution. The
interaction is assumed to be collective, i.e., at the individual gas
atom collides with the whole block of solid atoms. The individual
accommodation coefficients are calculated in relation to the initial
position and velocity of the gas atom. The values are averaged over
the parameters which determine the initial state of the interacting
system and the corresponding averaged accommodation coefficients
are calculated. The interaction between the gas and crystal atoms
conforms to the Lennard-Jones law [the (6~12) potential is used in
the calculations].

1. The system of equations of motion for the gas atom and the
linear chain of solid atomns interacting through the potential ¢(xy) can
be written in the form (see [3, 4]): ’
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Here k is the constant of the force of interaction between the links
of the chain; p is the ratio of the masses of the gas and chain atoms;

7 is the reduced time; Xp,1(7) and x,n(7) and x,n(7) are, respectively,
twice the relative displacement of the n-th and (n + 1)~th atom and
the velocity of the n-th atom. We assign a (6~12) Lennard-Jones po-
tential to the interaction of the gas atom and the first atom of the
chain and put a° = 2¢ /0%,

We assume that all the displacements are referred to @ /2; a is the
lattice spacing; €, and o are parameters of the Lennard-Jones poten-
tial, We take the positive direction along the chain axis as the direc~
tion towards the gas atom and assume that the zone of free motion is
a distance of 2a from the equilibrium position of the first chain atom
and the maximum amplitude of the lattice point does not exceed a/2,
so that the relative displacements of the points will be in the interval
[-1,...,0,...,#1]. Since the model is suitable only for small dis-
placements, this interval in the initial conditions is reduced by an
order. In relative magnitudes the range of variation of the velocities
of the lattice atom velocities will be included in the same interval..

Table 1
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10 0.1 0.01 0.170 0.310 5 0.169 0.309 5
10 0.3 0.01 0.334 0.556 4 0.329 0.550

10 0.5 0.01 0.608 0,846 0,677 0.887

10 0.9 0.01 0.910 0.992 3 1.000 1.000 1
10 0.1 0.1 0.288 0.493 1 0.273 0.472

10 0.3 0.1 0.580 0.723 2 0.591 0.832

10 0.9 0:1 0.966 0.999 0.926 0.995

-100 0.9 0.1 0.899 0.990 0.899 0.989

100 0.1 0.01 0.088 0.165 0.084 0.161 4
100 0.5 0.01 0.6%1 0.905 0.680 0.898 2
100 0.1 0.001 0.052 0.100 0.052 0.101

100 0.3 0.001 0.240 0,422 0.246 0.431

100 0.5 0.001 0.535 0.784 0.530 0.778

100 0.9 0.001 0.870 0.983 0.854 0.979

500 0.5 0.01 0.590 0.830 0.592 0.834 3
500 0.5 0.001 0.53% 0.785 0.537 0.786

*These columns give the numbers of the curves illustrated in Figs. 1 and 2.
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The energy of the incident atom is prescribed by the parameter I,
which is given by the equality Mi§ /2 = €1.
Thus, the initial conditions for system (1.1) can be written as;

2 (0)= Via/p,

21(0) =4 —{1},

2 (0)={n—1} (n=1),

Tona(0)={n}— {n+1) (n3z=1). (1.2)

Here the collision parameters are ¢, y, and oc°;{n} denotes the set
of uniformly distributed random numbers in the interval [—0.1,+0.1].

System (1.1) with initial conditions (1.2) was solved numerically
on a computer for a fixed number n. It is known that if the vibration
phase of the chain atoms is ignored the energy accommodation coef=
ficient depends significantly only on the first five atoms [2]. Hence,
in the calculations we considered 6 to 20 atoms, which correspond to
an order of 14 to 42 for the system of equations. The calculations were
carried our for parameters g = 0.1-0.8; ¢ = 10-500; o® = 10731073
and various sets of initial conditions.

Comparative graphs of the velocities xy of the gas atom for two
valuesof n (6and 10) are given in Figs. 1 and 2, respectively. The
calculations show that the chain length, beginning at the sixth to
seventh atom, has very little effect on the transmitted momentum and
energy. The interaction time is practically unchanged. Only the quali-
tative picture of the vibrations of the disturbed chain (and the gas
atom along with it, if capture occurs) is different when its length is
different. The distant atoms are only slightly disturbed. The accom-
modation coefficients 0y and « for the normal momentum and energy
for some interaction parameters are given in Table 1.

A comparison of the obtained values of the coefficients with the
available results, which were not averaged, shows that the effect of
the initial disturbances is independent of the chain length, and the
transfer coefficients for different initial conditions are mostly close to
the mean values. The chain length affects the transfer only at low
interaction energies and for the gas atom velocity range of practical
interest a consideration of five to six atoms in the linear model gives
a high degree of accuracy.

If the light gas particles are mostly reflected with low accom-
modation, then in the case of interaction of heavy atoms the coeffi-
cients o and « are close to unity and at low energies the gas atom
can be captured. In the last case the gas atom can complete oscilla-
tory movements close 1o the surface for a fairly long time (curve 1,
Fig. 2) or be captured immediately after the first oscillation (curve 3,
Fig. 1).

2. In the two- and three-dimensional models, as distinct from
the one-dimensional model, the potential of a given point A close to
the surface is made up of the potentials of interaction with all the sur~
face points of the lattice, i.e.,
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in the two- and three~dimensional simple cubical model, respectively.

Here 1y is the distance to the target atom; n and m are the num-
bers of the neighbors. Without loss of generality, and purely for sim=
plicity of the calculations, we will henceforth consider normal frontal
collisions, and the expressions for the potential ¢(A) will take the
form

o0

PA)=(r0) +2 3, 9(ra)s

n=1
P(AD=0(r) +4 D) @(rn) +4 D) @(rn, m)- (2.1)
n=j, n>0
m>0

Here r; = 22+ (na)?, tn,m? = 2°* (n*+ m%a’% and z is normal to
the surface.

It is difficult, however, to calculate analytically the sums in these
expressions when ¢(r) is replaced by a potential close to the actual
one {for instance, the (6~12) Lennard-Jones potential], but this is not
required, since it is sufficient to have an estimate of the interaction
forces due to the distant surface atoms. Referring all the lengths to the
lattice spacing a and putting the constanto in the Lennard~Jones poten=-
tial equal to a, the function ¢(r) for this potential, accurate to the
constant factor, will have the form

cp(r*)=1/r*12-—1/r*3, rn*2:1c2+n2,
Fmom® =k ntdm?, n,m=1,2....

Here k = z/a is the relative distance of the gas atom from the
target.

Thus, for a fixed point A ¢(A) is a function only of n in the two-
dimensional case of the two variables n, m in the three-dimensional
case. We investigate the first case. .

We consider the partial sum Sy = ¥(1)+ ... + ¥(n) of the infinite
series Seo. The residue of this series Ry = ¢(n+ 1)+ ¥(n+ 2) + ...,
owing to convergence of the latter, satisfies the inequalities

S fn)dn < R < S f(r)dn.
n41 n (2.2)

Here ¢(rp) = ¥(n), and in the improper integral f(n) will be a
continuous decreasing function of n, which atn =1, 2, 3 ... assumes
the values (1), ¥(2), ¥(3), «ou .

For a specific number 2n of neighbors surrounding the target atom
the total potential at any fixed point close to the surface is easily
calculated. The inequality (2.2) can be used to evaluate the error
introduced by neglect of the effect of the more distant surface atoms.
The integrals in (2.2) for the Lennard-Jones potential are calculated -
analytically. In what follows we need only the second one,
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In the case of interaction with a surface the evaluation of the
second term in the expression for the potential function (2.1) is simi-
lar to the two-dimensional model (m = 0), and we put the last term
in the form

o
2
n=1

For this term we have the inequality

[i @ (rn, m>]= § S
n=1

m=1

el £
S Spmdn < Ry < S Spmdn
n-1 n

provided that the internal sum is calculated exactly. If we denote the
residue of the internal series by Ry in an approximate calculation of
the latter, then for Ry an evaluation from above in the form

Rn<c§ [% @ (rn, m>]dn+2Rm

n m==1 n

2.9

will be valid. If we assign m and n and fix the value of n each time
we can calcuvlate the estimates for Ry, Summing these upper limits
we obtain the second terru in expression (2.4). After calculation of the
partialsum in m the integralin the first term is found by the usual
method and summation and integration can be interchanged.

Calculations were carried out for the relative error AR in the inter-
action potential in relation to the number of target-atom neighbors
considered and are given in Table 2. The relative error in the three~
dimensional model is a little higher than in the two-dimensional
model, but for a small number of neighbors it is several times larger.
The reduction of the error with increase in the number of neighboring
atoms, however, is so rapid that for practical purposes sufficient ac=
curacy is attained with the same number of considered neighbors in
the two- and three~dimensional cases.

Comparing the calculated values of the accommodation coeffi-
cients by using the approximate cutoff potential with and without
correction we note a qualitative agreement of the results, i.e., the
collision of the gas atom with the wall is affected mainly by the neigh-
bors on the surface closest to the target atom, the number of which
depends mainly on the parameters of the potential and for the known
potentials {(including the Lennard~Jones functions) with allowance for
the approximate values of the parameters themselves does not exceed
two or three. The zone of free motion, however, depends mainly on
the velocity of the incident gas [1].

Thus, neighboring atoms on a solid surface have less effect on
energy and momentum transfer than atoms of the second and deeper
layers, and the conducted calculations allow a quantitative assessment
of this effect. We note that the scheme of paired interaction [1],
based on distinction of a zone of strong interaction, is still valid and
a consideration of the nearest neighbors at moderate velocities will
give only a small correction factor to the accommodation coefficients
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calculated in {1].

3. We regard the finite block of solid atoms as a regular cubic
lattice. We select one atom on the surface face and take its equili-
brium position as the origin of coordinates (xy,x,,X4), where the x;~
axis is normal to this face. The lattice is struck by a flux of gas atoms
with a Maxwellian distribution of velocities u and we assign to the
macrovelocity a magnitude v and two angles © and ¢, the first of
which is measured from the normal to the surface.

Here o is used as a linear scale. The initial displacements of the
lattice atoms are random, distributed in relative units on the segment
(—0.1, +0.1) and the maximum value of the initial velocity is deter-
mined by the binding energy of the atoms in the lattice. The position
of the gas atom (r, 8, ¢) at the initjal instant is assumed to be on a
control surface separated from the plane x4 = 0 by a relative distance
d, which is determined by an evaluation of the force field above the
surface. In the calculations d is taken as 2, and the relative lattice
spacing as a = 1. The block of atoms implicated in the collision act
consists of 36 atoms. Depending on the interaction forces the control
surface is divided into cells, within which the initial points are dis=
tributed uniformly.

The equations of motion for the interacting system are solved on
a computer by the Adams method with a variable step,

The accommodation coefficients for the trajectory in the case of
a fixed initial position of the gas atom are obtained by averaging over
the velocities of this atom, which have a distribution in the form of
a Maxwellian function

[_ M(v— u)Z] ‘ 6.1

2kT
Here T is the temperature, k is the Boltzmann constant, and the
coefficients &, o, ay, which characterize the transfer of energy and
momentum (normal and tangential components, respectively) between
the beam of gas atoms with a prescribed macroscopic velocity and the
solid, are calculated after averaging over all possible trajectories.
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Table 2

L 0.5 1.0 2.0

n=m
AR, ARy, AR, ARy, AR, ARy,

1 0.469-10~% | 0.937.40™* | 0.277 0.434 0.2¢9 0.423

2 0.271-107> 1 0.405-1075 | 0.318-1071 | 0.470-1071 | 0,733-1071 | 0,106

3 0.385.107¢ | 0.542.4076 | 0.522-10™2 | 0.731-10"2 | 0,202-1071 | 0.268.1072

5 0.311-1077 1 0.372.1077 | 0.496-103 | 0.595-1073 | 0,255.10672 | 0.306-10"2

10 0.102.10~8 ] 0.142.1078 | 0.165-107¢ | 0.182.10™¢ | 0,101.1078 | 0.111.1G7®
- 20 0.444.10710 [ 0.466.10710 | 0.524-10~5 | 0.548.107¢ | 0.336-10 | 0,351-10™
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All the premises and evaluations in the formulation of the problem
are made on the basis of [1] and sections 1 and 2 of this paper.
The following values of parameters are used in the calculations:

—:8, a®=0.01.

v
=0.1-05 6=0-70°, —=——-
ﬁ; V2kT]M

10 — 500, ® =0 —360"

We found that at values of 6 > 35° the accommodation coefficients
depend strongly on the azimuthal angle @. Figure 3 shows the depen-
dences of o, o, and &, respectively, on $ in the range from 0 to
90° in the case of a fixed value of 6 (35°). We note that the depen-
dence of the accommodation coefficients on the initial energy is dif-
ferent for different values of the the mass ratio y. For instance, for
i = 0.1 the energy accommodation coefficient decreases with increase
in initial energy, whereas for p = 0,3, begins to depend on the orien-
tation of the initial vector v and usually increases with increase in the
parameter [ for almost all ¢ and 6. The relationship is similar for
u= 0.5.

The coefficients & and ¢, depend in a more complex manner
on ] and #, as can be seen in the special case and in Fig. 3. The varia-
tion of & and o with the angle 6 is shown in Fig. 4. The numerical
values of @, &r, and o at large 6 must be treated with caution, how-
ever, since the errors in the calculations increase with increase in 6.

In Figs. 3 and 4 the curves are plotted for the following values
of parameters p and [:

1—pu=04, 1=10; 2 —pn =04, I=100;
3—pu=203, 1=10; 4 —p =03, = 100.

The over-all qualitative picture of variation of the accommodation
coefficients for the energy and tangential and normal momenta, cal-
culated with due regard to the collectivity of interaction and averaging
over the trajectories, differs a little from the picture for collective
interaction without averaging [5]. For small  the averaged values of
the accommodation coefficients are even quantitatively closer to the
corresponding values for paired interaction and the same potential than
the coefficients calculated in [5). With the indicated parameters the
averaged interaction time is practically independent of the selected
set of parameters. In addition, the accommodation coefficients calcu-
lated for individual trajectories do not have a great spread due to the
Maxwellian velocity distribution of the incident molecules (the maxi-
mum deviation from the mean value for o is about 8%). This is ob=
viously valid only for the selected range of velocities. It should be
noted, however, that with increase in the angle 6 this relationship
appears at velocities of the order of the first cosmic velocity and for
sufficiently large angles of inclination of the incident flux to the solid
surface (6 = 70°) the correction to the accommodation coefficients
will probably be comparable with the value of these coefficients. The
calculation procedure for such angles differs from that given in this
paper.

It should be noted in conclusion that a similar calculation of the
averaged accommodation coefficients was carried out in [6] and agrees
qualitatively with our results, In this paper, however, the formulation
of the problem, the assignment of the initial conditions, and the cal-
culation procedure differ from those in [6], mainly in the fact that
practically any distribution of incident particles and fairly large angles
of incidence 6 can be taken into account. In addition, superfluous
information can be eliminated.
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